CycleGAN, Image-to-Image Translation

In this notebook, we're going to define and train a CycleGAN to read in an image from a set $X$ and transform it so that it looks as if it belongs in set $Y$. Specifically, we'll look at a set of images of Yosemite national park taken either during the summer of winter. The seasons are our two domains!

The objective will be to train generators that learn to transform an image from domain $X$ into an image that looks like it came from domain $Y$ (and vice versa).

Some examples of image data in both sets are pictured below.

Unpaired Training Data

These images do not come with labels, but CycleGANs give us a way to learn the mapping between one image domain and another using an unsupervised approach. A CycleGAN is designed for image-to-image translation and it learns from unpaired training data. This means that in order to train a generator to translate images from domain $X$ to domain $Y$, we do not have to have exact correspondences between individual images in those domains. For example, in the paper that introduced CycleGANs, the authors are able to translate between images of horses and zebras, even though there are no images of a zebra in exactly the same position as a horse or with exactly the same background, etc. Thus, CycleGANs enable learning a mapping from one domain $X$ to another domain $Y$ without having to find perfectly-matched, training pairs!

CycleGAN and Notebook Structure

A CycleGAN is made of two types of networks: discriminators, and generators. In this example, the discriminators are responsible for classifying images as real or fake (for both $X$ and $Y$ kinds of images). The generators are responsible for generating convincing, fake images for both kinds of images.

This notebook will detail the steps you should take to define and train such a CycleGAN.

  1. You'll load in the image data using PyTorch's DataLoader class to efficiently read in images from a specified directory.
  2. Then, you'll be tasked with defining the CycleGAN architecture according to provided specifications. You'll define the discriminator and the generator models.
  3. You'll complete the training cycle by calculating the adversarial and cycle consistency losses for the generator and discriminator network and completing a number of training epochs. It's suggested that you enable GPU usage for training.
  4. Finally, you'll evaluate your model by looking at the loss over time and looking at sample, generated images.

Load and Visualize the Data

We'll first load in and visualize the training data, importing the necessary libraries to do so.

If you are working locally, you'll need to download the data as a zip file by clicking here.

It may be named summer2winter-yosemite with a dash or an underscore, so take note and make sure the below image_dir accordingly. Then you can proceed with the following loading code.


In [1]:
# loading in and transforming data
import os
import torch
from torch.utils.data import DataLoader
import torchvision
import torchvision.datasets as datasets
import torchvision.transforms as transforms

# visualizing data
import matplotlib.pyplot as plt
import numpy as np
import warnings

%matplotlib inline

DataLoaders

The get_data_loader function returns training and test DataLoaders that can load data efficiently and in specified batches. The function has the following parameters:

  • image_type: summer or winter, the names of the directories where the X and Y images are stored
  • image_dir: name of the main image directory, which holds all training and test images
  • image_size: resized, square image dimension (all images will be resized to this dim)
  • batch_size: number of images in one batch of data

The test data is strictly for feeding to our generators, later on, so we can visualize some generated samples on fixed, test data.

You can see that this function is also responsible for making sure our images are of the right, square size (128x128x3) and converted into Tensor image types.

It's suggested that you use the default values of these parameters.

Note: If you are trying this code on a different set of data, you may get better results with larger image_size and batch_size parameters. If you change the batch_size, make sure that you create complete batches in the training loop otherwise you may get an error when trying to save sample data.


In [2]:
def get_data_loader(image_type, image_dir='summer2winter_yosemite', 
                    image_size=128, batch_size=16, num_workers=0):
    """Returns training and test data loaders for a given image type, either 'summer' or 'winter'. 
       These images will be resized to 128x128x3, by default, converted into Tensors, and normalized.
    """
    
    # resize and normalize the images
    transform = transforms.Compose([transforms.Resize(image_size), # resize to 128x128
                                    transforms.ToTensor()])

    # get training and test directories
    image_path = './' + image_dir
    train_path = os.path.join(image_path, image_type)
    test_path = os.path.join(image_path, 'test_{}'.format(image_type))

    # define datasets using ImageFolder
    train_dataset = datasets.ImageFolder(train_path, transform)
    test_dataset = datasets.ImageFolder(test_path, transform)

    # create and return DataLoaders
    train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)

    return train_loader, test_loader

In [3]:
# Create train and test dataloaders for images from the two domains X and Y
# image_type = directory names for our data
dataloader_X, test_dataloader_X = get_data_loader(image_type='summer')
dataloader_Y, test_dataloader_Y = get_data_loader(image_type='winter')

Display some Training Images

Below we provide a function imshow that reshape some given images and converts them to NumPy images so that they can be displayed by plt. This cell should display a grid that contains a batch of image data from set $X$.


In [4]:
# helper imshow function
def imshow(img):
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    

# get some images from X
dataiter = iter(dataloader_X)
# the "_" is a placeholder for no labels
images, _ = dataiter.next()

# show images
fig = plt.figure(figsize=(12, 8))
imshow(torchvision.utils.make_grid(images))


Next, let's visualize a batch of images from set $Y$.


In [5]:
# get some images from Y
dataiter = iter(dataloader_Y)
images, _ = dataiter.next()

# show images
fig = plt.figure(figsize=(12,8))
imshow(torchvision.utils.make_grid(images))


Pre-processing: scaling from -1 to 1

We need to do a bit of pre-processing; we know that the output of our tanh activated generator will contain pixel values in a range from -1 to 1, and so, we need to rescale our training images to a range of -1 to 1. (Right now, they are in a range from 0-1.)


In [6]:
# current range
img = images[0]

print('Min: ', img.min())
print('Max: ', img.max())


Min:  tensor(1.00000e-02 *
       1.9608)
Max:  tensor(0.9373)

In [7]:
# helper scale function
def scale(x, feature_range=(-1, 1)):
    ''' Scale takes in an image x and returns that image, scaled
       with a feature_range of pixel values from -1 to 1. 
       This function assumes that the input x is already scaled from 0-255.'''
    
    # scale from 0-1 to feature_range
    min, max = feature_range
    x = x * (max - min) + min
    return x

In [8]:
# scaled range
scaled_img = scale(img)

print('Scaled min: ', scaled_img.min())
print('Scaled max: ', scaled_img.max())


Scaled min:  tensor(-0.9608)
Scaled max:  tensor(0.8745)

Define the Model

A CycleGAN is made of two discriminator and two generator networks.

Discriminators

The discriminators, $D_X$ and $D_Y$, in this CycleGAN are convolutional neural networks that see an image and attempt to classify it as real or fake. In this case, real is indicated by an output close to 1 and fake as close to 0. The discriminators have the following architecture:

This network sees a 128x128x3 image, and passes it through 5 convolutional layers that downsample the image by a factor of 2. The first four convolutional layers have a BatchNorm and ReLu activation function applied to their output, and the last acts as a classification layer that outputs one value.

Convolutional Helper Function

To define the discriminators, you're expected to use the provided conv function, which creates a convolutional layer + an optional batch norm layer.


In [9]:
import torch.nn as nn
import torch.nn.functional as F

# helper conv function
def conv(in_channels, out_channels, kernel_size, stride=2, padding=1, batch_norm=True):
    """Creates a convolutional layer, with optional batch normalization.
    """
    layers = []
    conv_layer = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, 
                           kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
    
    layers.append(conv_layer)

    if batch_norm:
        layers.append(nn.BatchNorm2d(out_channels))
    return nn.Sequential(*layers)

Define the Discriminator Architecture

Your task is to fill in the __init__ function with the specified 5 layer conv net architecture. Both $D_X$ and $D_Y$ have the same architecture, so we only need to define one class, and later instantiate two discriminators.

It's recommended that you use a kernel size of 4x4 and use that to determine the correct stride and padding size for each layer. This Stanford resource may also help in determining stride and padding sizes.

  • Define your convolutional layers in __init__
  • Then fill in the forward behavior of the network

The forward function defines how an input image moves through the discriminator, and the most important thing is to pass it through your convolutional layers in order, with a ReLu activation function applied to all but the last layer.

You should not apply a sigmoid activation function to the output, here, and that is because we are planning on using a squared error loss for training. And you can read more about this loss function, later in the notebook.


In [10]:
class Discriminator(nn.Module):
    
    def __init__(self, conv_dim=64):
        super(Discriminator, self).__init__()

        # Define all convolutional layers
        # Should accept an RGB image as input and output a single value

        # Convolutional layers, increasing in depth
        # first layer has *no* batchnorm
        self.conv1 = conv(3, conv_dim, 4, batch_norm=False) # x, y = 64, depth 64
        self.conv2 = conv(conv_dim, conv_dim*2, 4) # (32, 32, 128)
        self.conv3 = conv(conv_dim*2, conv_dim*4, 4) # (16, 16, 256)
        self.conv4 = conv(conv_dim*4, conv_dim*8, 4) # (8, 8, 512)
        
        # Classification layer
        self.conv5 = conv(conv_dim*8, 1, 4, stride=1, batch_norm=False)

    def forward(self, x):
        # relu applied to all conv layers but last
        out = F.relu(self.conv1(x))
        out = F.relu(self.conv2(out))
        out = F.relu(self.conv3(out))
        out = F.relu(self.conv4(out))
        # last, classification layer
        out = self.conv5(out)
        return out

Generators

The generators, G_XtoY and G_YtoX (sometimes called F), are made of an encoder, a conv net that is responsible for turning an image into a smaller feature representation, and a decoder, a transpose_conv net that is responsible for turning that representation into an transformed image. These generators, one from XtoY and one from YtoX, have the following architecture:

This network sees a 128x128x3 image, compresses it into a feature representation as it goes through three convolutional layers and reaches a series of residual blocks. It goes through a few (typically 6 or more) of these residual blocks, then it goes through three transpose convolutional layers (sometimes called de-conv layers) which upsample the output of the resnet blocks and create a new image!

Note that most of the convolutional and transpose-convolutional layers have BatchNorm and ReLu functions applied to their outputs with the exception of the final transpose convolutional layer, which has a tanh activation function applied to the output. Also, the residual blocks are made of convolutional and batch normalization layers, which we'll go over in more detail, next.


Residual Block Class

To define the generators, you're expected to define a ResidualBlock class which will help you connect the encoder and decoder portions of the generators. You might be wondering, what exactly is a Resnet block? It may sound familiar from something like ResNet50 for image classification, pictured below.

ResNet blocks rely on connecting the output of one layer with the input of an earlier layer. The motivation for this structure is as follows: very deep neural networks can be difficult to train. Deeper networks are more likely to have vanishing or exploding gradients and, therefore, have trouble reaching convergence; batch normalization helps with this a bit. However, during training, we often see that deep networks respond with a kind of training degradation. Essentially, the training accuracy stops improving and gets saturated at some point during training. In the worst cases, deep models would see their training accuracy actually worsen over time!

One solution to this problem is to use Resnet blocks that allow us to learn so-called residual functions as they are applied to layer inputs. You can read more about this proposed architecture in the paper, Deep Residual Learning for Image Recognition by Kaiming He et. al, and the below image is from that paper.

Residual Functions

Usually, when we create a deep learning model, the model (several layers with activations applied) is responsible for learning a mapping, M, from an input x to an output y.

M(x) = y (Equation 1)

Instead of learning a direct mapping from x to y, we can instead define a residual function

F(x) = M(x) - x

This looks at the difference between a mapping applied to x and the original input, x. F(x) is, typically, two convolutional layers + normalization layer and a ReLu in between. These convolutional layers should have the same number of inputs as outputs. This mapping can then be written as the following; a function of the residual function and the input x. The addition step creates a kind of loop that connects the input x to the output, y:

M(x) = F(x) + x (Equation 2) or

y = F(x) + x (Equation 3)

Optimizing a Residual Function

The idea is that it is easier to optimize this residual function F(x) than it is to optimize the original mapping M(x). Consider an example; what if we want y = x?

From our first, direct mapping equation, Equation 1, we could set M(x) = x but it is easier to solve the residual equation F(x) = 0, which, when plugged in to Equation 3, yields y = x.

Defining the ResidualBlock Class

To define the ResidualBlock class, we'll define residual functions (a series of layers), apply them to an input x and add them to that same input. This is defined just like any other neural network, with an __init__ function and the addition step in the forward function.

In our case, you'll want to define the residual block as:

  • Two convolutional layers with the same size input and output
  • Batch normalization applied to the outputs of the convolutional layers
  • A ReLu function on the output of the first convolutional layer

Then, in the forward function, add the input x to this residual block. Feel free to use the helper conv function from above to create this block.


In [11]:
# residual block class
class ResidualBlock(nn.Module):
    """Defines a residual block.
       This adds an input x to a convolutional layer (applied to x) with the same size input and output.
       These blocks allow a model to learn an effective transformation from one domain to another.
    """
    def __init__(self, conv_dim):
        super(ResidualBlock, self).__init__()
        # conv_dim = number of inputs
        
        # define two convolutional layers + batch normalization that will act as our residual function, F(x)
        # layers should have the same shape input as output; I suggest a kernel_size of 3
        
        self.conv_layer1 = conv(in_channels=conv_dim, out_channels=conv_dim, 
                                kernel_size=3, stride=1, padding=1, batch_norm=True)
        
        self.conv_layer2 = conv(in_channels=conv_dim, out_channels=conv_dim, 
                               kernel_size=3, stride=1, padding=1, batch_norm=True)
        
    def forward(self, x):
        # apply a ReLu activation the outputs of the first layer
        # return a summed output, x + resnet_block(x)
        out_1 = F.relu(self.conv_layer1(x))
        out_2 = x + self.conv_layer2(out_1)
        return out_2

Transpose Convolutional Helper Function

To define the generators, you're expected to use the above conv function, ResidualBlock class, and the below deconv helper function, which creates a transpose convolutional layer + an optional batchnorm layer.


In [12]:
# helper deconv function
def deconv(in_channels, out_channels, kernel_size, stride=2, padding=1, batch_norm=True):
    """Creates a transpose convolutional layer, with optional batch normalization.
    """
    layers = []
    # append transpose conv layer
    layers.append(nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, bias=False))
    # optional batch norm layer
    if batch_norm:
        layers.append(nn.BatchNorm2d(out_channels))
    return nn.Sequential(*layers)

Define the Generator Architecture

  • Complete the __init__ function with the specified 3 layer encoder convolutional net, a series of residual blocks (the number of which is given by n_res_blocks), and then a 3 layer decoder transpose convolutional net.
  • Then complete the forward function to define the forward behavior of the generators. Recall that the last layer has a tanh activation function.

Both $G_{XtoY}$ and $G_{YtoX}$ have the same architecture, so we only need to define one class, and later instantiate two generators.


In [13]:
class CycleGenerator(nn.Module):
    
    def __init__(self, conv_dim=64, n_res_blocks=6):
        super(CycleGenerator, self).__init__()

        # 1. Define the encoder part of the generator
        
        # initial convolutional layer given, below
        self.conv1 = conv(3, conv_dim, 4)
        self.conv2 = conv(conv_dim, conv_dim*2, 4)
        self.conv3 = conv(conv_dim*2, conv_dim*4, 4)

        # 2. Define the resnet part of the generator
        # Residual blocks
        res_layers = []
        for layer in range(n_res_blocks):
            res_layers.append(ResidualBlock(conv_dim*4))
        # use sequential to create these layers
        self.res_blocks = nn.Sequential(*res_layers)

        # 3. Define the decoder part of the generator
        # two transpose convolutional layers and a third that looks a lot like the initial conv layer
        self.deconv1 = deconv(conv_dim*4, conv_dim*2, 4)
        self.deconv2 = deconv(conv_dim*2, conv_dim, 4)
        # no batch norm on last layer
        self.deconv3 = deconv(conv_dim, 3, 4, batch_norm=False)

    def forward(self, x):
        """Given an image x, returns a transformed image."""
        # define feedforward behavior, applying activations as necessary

        out = F.relu(self.conv1(x))
        out = F.relu(self.conv2(out))
        out = F.relu(self.conv3(out))

        out = self.res_blocks(out)

        out = F.relu(self.deconv1(out))
        out = F.relu(self.deconv2(out))
        # tanh applied to last layer
        out = F.tanh(self.deconv3(out))

        return out

Create the complete network

Using the classes you defined earlier, you can define the discriminators and generators necessary to create a complete CycleGAN. The given parameters should work for training.

First, create two discriminators, one for checking if $X$ sample images are real, and one for checking if $Y$ sample images are real. Then the generators. Instantiate two of them, one for transforming a painting into a realistic photo and one for transforming a photo into into a painting.


In [14]:
def create_model(g_conv_dim=64, d_conv_dim=64, n_res_blocks=6):
    """Builds the generators and discriminators."""
    
    # Instantiate generators
    G_XtoY = CycleGenerator(conv_dim=g_conv_dim, n_res_blocks=n_res_blocks)
    G_YtoX = CycleGenerator(conv_dim=g_conv_dim, n_res_blocks=n_res_blocks)
    # Instantiate discriminators
    D_X = Discriminator(conv_dim=d_conv_dim)
    D_Y = Discriminator(conv_dim=d_conv_dim)

    # move models to GPU, if available
    if torch.cuda.is_available():
        device = torch.device("cuda:0")
        G_XtoY.to(device)
        G_YtoX.to(device)
        D_X.to(device)
        D_Y.to(device)
        print('Models moved to GPU.')
    else:
        print('Only CPU available.')

    return G_XtoY, G_YtoX, D_X, D_Y

In [15]:
# call the function to get models
G_XtoY, G_YtoX, D_X, D_Y = create_model()


Models moved to GPU.

Check that you've implemented this correctly

The function create_model should return the two generator and two discriminator networks. After you've defined these discriminator and generator components, it's good practice to check your work. The easiest way to do this is to print out your model architecture and read through it to make sure the parameters are what you expected. The next cell will print out their architectures.


In [16]:
# helper function for printing the model architecture
def print_models(G_XtoY, G_YtoX, D_X, D_Y):
    """Prints model information for the generators and discriminators.
    """
    print("                     G_XtoY                    ")
    print("-----------------------------------------------")
    print(G_XtoY)
    print()

    print("                     G_YtoX                    ")
    print("-----------------------------------------------")
    print(G_YtoX)
    print()

    print("                      D_X                      ")
    print("-----------------------------------------------")
    print(D_X)
    print()

    print("                      D_Y                      ")
    print("-----------------------------------------------")
    print(D_Y)
    print()
    

# print all of the models
print_models(G_XtoY, G_YtoX, D_X, D_Y)


                     G_XtoY                    
-----------------------------------------------
CycleGenerator(
  (conv1): Sequential(
    (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (conv2): Sequential(
    (0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (conv3): Sequential(
    (0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (res_blocks): Sequential(
    (0): ResidualBlock(
      (conv_layer1): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (conv_layer2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ResidualBlock(
      (conv_layer1): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (conv_layer2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (2): ResidualBlock(
      (conv_layer1): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (conv_layer2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (3): ResidualBlock(
      (conv_layer1): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (conv_layer2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (4): ResidualBlock(
      (conv_layer1): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (conv_layer2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (5): ResidualBlock(
      (conv_layer1): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (conv_layer2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
  )
  (deconv1): Sequential(
    (0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (deconv2): Sequential(
    (0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (deconv3): Sequential(
    (0): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
  )
)

                     G_YtoX                    
-----------------------------------------------
CycleGenerator(
  (conv1): Sequential(
    (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (conv2): Sequential(
    (0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (conv3): Sequential(
    (0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (res_blocks): Sequential(
    (0): ResidualBlock(
      (conv_layer1): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (conv_layer2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ResidualBlock(
      (conv_layer1): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (conv_layer2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (2): ResidualBlock(
      (conv_layer1): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (conv_layer2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (3): ResidualBlock(
      (conv_layer1): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (conv_layer2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (4): ResidualBlock(
      (conv_layer1): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (conv_layer2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (5): ResidualBlock(
      (conv_layer1): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (conv_layer2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
  )
  (deconv1): Sequential(
    (0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (deconv2): Sequential(
    (0): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (deconv3): Sequential(
    (0): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
  )
)

                      D_X                      
-----------------------------------------------
Discriminator(
  (conv1): Sequential(
    (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
  )
  (conv2): Sequential(
    (0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (conv3): Sequential(
    (0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (conv4): Sequential(
    (0): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (conv5): Sequential(
    (0): Conv2d(512, 1, kernel_size=(4, 4), stride=(1, 1), padding=(1, 1), bias=False)
  )
)

                      D_Y                      
-----------------------------------------------
Discriminator(
  (conv1): Sequential(
    (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
  )
  (conv2): Sequential(
    (0): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (conv3): Sequential(
    (0): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (conv4): Sequential(
    (0): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  )
  (conv5): Sequential(
    (0): Conv2d(512, 1, kernel_size=(4, 4), stride=(1, 1), padding=(1, 1), bias=False)
  )
)

Discriminator and Generator Losses

Computing the discriminator and the generator losses are key to getting a CycleGAN to train.

Image from original paper by Jun-Yan Zhu et. al.

  • The CycleGAN contains two mapping functions $G: X \rightarrow Y$ and $F: Y \rightarrow X$, and associated adversarial discriminators $D_Y$ and $D_X$. (a) $D_Y$ encourages $G$ to translate $X$ into outputs indistinguishable from domain $Y$, and vice versa for $D_X$ and $F$.

  • To further regularize the mappings, we introduce two cycle consistency losses that capture the intuition that if we translate from one domain to the other and back again we should arrive at where we started. (b) Forward cycle-consistency loss and (c) backward cycle-consistency loss.

Least Squares GANs

We've seen that regular GANs treat the discriminator as a classifier with the sigmoid cross entropy loss function. However, this loss function may lead to the vanishing gradients problem during the learning process. To overcome such a problem, we'll use a least squares loss function for the discriminator. This structure is also referred to as a least squares GAN or LSGAN, and you can read the original paper on LSGANs, here. The authors show that LSGANs are able to generate higher quality images than regular GANs and that this loss type is a bit more stable during training!

Discriminator Losses

The discriminator losses will be mean squared errors between the output of the discriminator, given an image, and the target value, 0 or 1, depending on whether it should classify that image as fake or real. For example, for a real image, x, we can train $D_X$ by looking at how close it is to recognizing and image x as real using the mean squared error:

out_x = D_X(x)
real_err = torch.mean((out_x-1)**2)

Generator Losses

Calculating the generator losses will look somewhat similar to calculating the discriminator loss; there will still be steps in which you generate fake images that look like they belong to the set of $X$ images but are based on real images in set $Y$, and vice versa. You'll compute the "real loss" on those generated images by looking at the output of the discriminator as it's applied to these fake images; this time, your generator aims to make the discriminator classify these fake images as real images.

Cycle Consistency Loss

In addition to the adversarial losses, the generator loss terms will also include the cycle consistency loss. This loss is a measure of how good a reconstructed image is, when compared to an original image.

Say you have a fake, generated image, x_hat, and a real image, y. You can get a reconstructed y_hat by applying G_XtoY(x_hat) = y_hat and then check to see if this reconstruction y_hat and the orginal image y match. For this, we recommed calculating the L1 loss, which is an absolute difference, between reconstructed and real images. You may also choose to multiply this loss by some weight value lambda_weight to convey its importance.

The total generator loss will be the sum of the generator losses and the forward and backward cycle consistency losses.


Define Loss Functions

To help us calculate the discriminator and gnerator losses during training, let's define some helpful loss functions. Here, we'll define three.

  1. real_mse_loss that looks at the output of a discriminator and returns the error based on how close that output is to being classified as real. This should be a mean squared error.
  2. fake_mse_loss that looks at the output of a discriminator and returns the error based on how close that output is to being classified as fake. This should be a mean squared error.
  3. cycle_consistency_loss that looks at a set of real image and a set of reconstructed/generated images, and returns the mean absolute error between them. This has a lambda_weight parameter that will weight the mean absolute error in a batch.

It's recommended that you take a look at the original, CycleGAN paper to get a starting value for lambda_weight.


In [17]:
def real_mse_loss(D_out):
    # how close is the produced output from being "real"?
    return torch.mean((D_out-1)**2)

def fake_mse_loss(D_out):
    # how close is the produced output from being "false"?
    return torch.mean(D_out**2)

def cycle_consistency_loss(real_im, reconstructed_im, lambda_weight):
    # calculate reconstruction loss 
    # as absolute value difference between the real and reconstructed images
    reconstr_loss = torch.mean(torch.abs(real_im - reconstructed_im))
    # return weighted loss
    return lambda_weight*reconstr_loss

Define the Optimizers

Next, let's define how this model will update its weights. This, like the GANs you may have seen before, uses Adam optimizers for the discriminator and generator. It's again recommended that you take a look at the original, CycleGAN paper to get starting hyperparameter values.


In [18]:
import torch.optim as optim

# hyperparams for Adam optimizer
lr=0.0002
beta1=0.5
beta2=0.999 # default value

g_params = list(G_XtoY.parameters()) + list(G_YtoX.parameters())  # Get generator parameters

# Create optimizers for the generators and discriminators
g_optimizer = optim.Adam(g_params, lr, [beta1, beta2])
d_x_optimizer = optim.Adam(D_X.parameters(), lr, [beta1, beta2])
d_y_optimizer = optim.Adam(D_Y.parameters(), lr, [beta1, beta2])

Training a CycleGAN

When a CycleGAN trains, and sees one batch of real images from set $X$ and $Y$, it trains by performing the following steps:

Training the Discriminators

  1. Compute the discriminator $D_X$ loss on real images
  2. Generate fake images that look like domain $X$ based on real images in domain $Y$
  3. Compute the fake loss for $D_X$
  4. Compute the total loss and perform backpropagation and $D_X$ optimization
  5. Repeat steps 1-4 only with $D_Y$ and your domains switched!

Training the Generators

  1. Generate fake images that look like domain $X$ based on real images in domain $Y$
  2. Compute the generator loss based on how $D_X$ responds to fake $X$
  3. Generate reconstructed $\hat{Y}$ images based on the fake $X$ images generated in step 1
  4. Compute the cycle consistency loss by comparing the reconstructions with real $Y$ images
  5. Repeat steps 1-4 only swapping domains
  6. Add up all the generator and reconstruction losses and perform backpropagation + optimization

Saving Your Progress

A CycleGAN repeats its training process, alternating between training the discriminators and the generators, for a specified number of training iterations. You've been given code that will save some example generated images that the CycleGAN has learned to generate after a certain number of training iterations. Along with looking at the losses, these example generations should give you an idea of how well your network has trained.

Below, you may choose to keep all default parameters; your only task is to calculate the appropriate losses and complete the training cycle.


In [19]:
# import save code
from helpers import save_samples, checkpoint

In [21]:
# train the network

def training_loop(dataloader_X, dataloader_Y, test_dataloader_X, test_dataloader_Y, 
                  n_epochs=1000):
    
    print_every=10
    
    # keep track of losses over time
    losses = []
    
    test_iter_X = iter(test_dataloader_X)
    test_iter_Y = iter(test_dataloader_Y)

    # Get some fixed data from domains X and Y for sampling. These are images that are held
    # constant throughout training, that allow us to inspect the model's performance.
    fixed_X = test_iter_X.next()[0]
    fixed_Y = test_iter_Y.next()[0]
    fixed_X = scale(fixed_X) # make sure to scale to a range -1 to 1
    fixed_Y = scale(fixed_Y)

    # batches per epoch
    iter_X = iter(dataloader_X)
    iter_Y = iter(dataloader_Y)
    batches_per_epoch = min(len(iter_X), len(iter_Y))

    for epoch in range(1, n_epochs+1):

        # Reset iterators for each epoch
        if epoch % batches_per_epoch == 0:
            iter_X = iter(dataloader_X)
            iter_Y = iter(dataloader_Y)

        images_X, _ = iter_X.next()
        images_X = scale(images_X) # make sure to scale to a range -1 to 1

        images_Y, _ = iter_Y.next()
        images_Y = scale(images_Y)
        
        # move images to GPU if available (otherwise stay on CPU)
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        images_X = images_X.to(device)
        images_Y = images_Y.to(device)


        # ============================================
        #            TRAIN THE DISCRIMINATORS
        # ============================================

        ##   First: D_X, real and fake loss components   ##

        # Train with real images
        d_x_optimizer.zero_grad()

        # 1. Compute the discriminator losses on real images
        out_x = D_X(images_X)
        D_X_real_loss = real_mse_loss(out_x)
        
        # Train with fake images
        
        # 2. Generate fake images that look like domain X based on real images in domain Y
        fake_X = G_YtoX(images_Y)

        # 3. Compute the fake loss for D_X
        out_x = D_X(fake_X)
        D_X_fake_loss = fake_mse_loss(out_x)
        

        # 4. Compute the total loss and perform backprop
        d_x_loss = D_X_real_loss + D_X_fake_loss
        d_x_loss.backward()
        d_x_optimizer.step()

        
        ##   Second: D_Y, real and fake loss components   ##
        
        # Train with real images
        d_y_optimizer.zero_grad()
        
        # 1. Compute the discriminator losses on real images
        out_y = D_Y(images_Y)
        D_Y_real_loss = real_mse_loss(out_y)
        
        # Train with fake images

        # 2. Generate fake images that look like domain Y based on real images in domain X
        fake_Y = G_XtoY(images_X)

        # 3. Compute the fake loss for D_Y
        out_y = D_Y(fake_Y)
        D_Y_fake_loss = fake_mse_loss(out_y)

        # 4. Compute the total loss and perform backprop
        d_y_loss = D_Y_real_loss + D_Y_fake_loss
        d_y_loss.backward()
        d_y_optimizer.step()


        # =========================================
        #            TRAIN THE GENERATORS
        # =========================================

        ##    First: generate fake X images and reconstructed Y images    ##
        g_optimizer.zero_grad()

        # 1. Generate fake images that look like domain X based on real images in domain Y
        fake_X = G_YtoX(images_Y)

        # 2. Compute the generator loss based on domain X
        out_x = D_X(fake_X)
        g_YtoX_loss = real_mse_loss(out_x)

        # 3. Create a reconstructed y
        # 4. Compute the cycle consistency loss (the reconstruction loss)
        reconstructed_Y = G_XtoY(fake_X)
        reconstructed_y_loss = cycle_consistency_loss(images_Y, reconstructed_Y, lambda_weight=10)


        ##    Second: generate fake Y images and reconstructed X images    ##

        # 1. Generate fake images that look like domain Y based on real images in domain X
        fake_Y = G_XtoY(images_X)

        # 2. Compute the generator loss based on domain Y
        out_y = D_Y(fake_Y)
        g_XtoY_loss = real_mse_loss(out_y)

        # 3. Create a reconstructed x
        # 4. Compute the cycle consistency loss (the reconstruction loss)
        reconstructed_X = G_YtoX(fake_Y)
        reconstructed_x_loss = cycle_consistency_loss(images_X, reconstructed_X, lambda_weight=10)

        # 5. Add up all generator and reconstructed losses and perform backprop
        g_total_loss = g_YtoX_loss + g_XtoY_loss + reconstructed_y_loss + reconstructed_x_loss
        g_total_loss.backward()
        g_optimizer.step()


        # Print the log info
        if epoch % print_every == 0:
            # append real and fake discriminator losses and the generator loss
            losses.append((d_x_loss.item(), d_y_loss.item(), g_total_loss.item()))
            print('Epoch [{:5d}/{:5d}] | d_X_loss: {:6.4f} | d_Y_loss: {:6.4f} | g_total_loss: {:6.4f}'.format(
                    epoch, n_epochs, d_x_loss.item(), d_y_loss.item(), g_total_loss.item()))

            
        sample_every=100
        # Save the generated samples
        if epoch % sample_every == 0:
            G_YtoX.eval() # set generators to eval mode for sample generation
            G_XtoY.eval()
            save_samples(epoch, fixed_Y, fixed_X, G_YtoX, G_XtoY, batch_size=16)
            G_YtoX.train()
            G_XtoY.train()

        # uncomment these lines, if you want to save your model
#         checkpoint_every=1000
#         # Save the model parameters
#         if epoch % checkpoint_every == 0:
#             checkpoint(epoch, G_XtoY, G_YtoX, D_X, D_Y)

    return losses

In [22]:
n_epochs = 4000 # keep this small when testing if a model first works

losses = training_loop(dataloader_X, dataloader_Y, test_dataloader_X, test_dataloader_Y, n_epochs=n_epochs)


Epoch [   10/ 4000] | d_X_loss: 0.3958 | d_Y_loss: 0.4528 | g_total_loss: 9.4696
Epoch [   20/ 4000] | d_X_loss: 0.2927 | d_Y_loss: 0.4160 | g_total_loss: 8.6626
Epoch [   30/ 4000] | d_X_loss: 0.1057 | d_Y_loss: 0.4825 | g_total_loss: 7.2664
Epoch [   40/ 4000] | d_X_loss: 0.2113 | d_Y_loss: 0.3687 | g_total_loss: 7.1753
Epoch [   50/ 4000] | d_X_loss: 0.3938 | d_Y_loss: 0.4327 | g_total_loss: 5.7858
Epoch [   60/ 4000] | d_X_loss: 0.4369 | d_Y_loss: 0.3721 | g_total_loss: 6.0677
Epoch [   70/ 4000] | d_X_loss: 0.5746 | d_Y_loss: 0.4035 | g_total_loss: 5.5985
Epoch [   80/ 4000] | d_X_loss: 0.3245 | d_Y_loss: 0.6153 | g_total_loss: 5.2730
Epoch [   90/ 4000] | d_X_loss: 0.3823 | d_Y_loss: 0.2637 | g_total_loss: 5.8418
Epoch [  100/ 4000] | d_X_loss: 0.5089 | d_Y_loss: 0.3039 | g_total_loss: 5.3163
Saved samples_cyclegan/sample-000100-X-Y.png
Saved samples_cyclegan/sample-000100-Y-X.png
Epoch [  110/ 4000] | d_X_loss: 0.4999 | d_Y_loss: 0.3664 | g_total_loss: 5.0403
Epoch [  120/ 4000] | d_X_loss: 0.3447 | d_Y_loss: 0.3905 | g_total_loss: 4.9195
Epoch [  130/ 4000] | d_X_loss: 0.3520 | d_Y_loss: 0.4624 | g_total_loss: 4.6650
Epoch [  140/ 4000] | d_X_loss: 0.3706 | d_Y_loss: 0.4946 | g_total_loss: 4.4959
Epoch [  150/ 4000] | d_X_loss: 0.4719 | d_Y_loss: 0.3111 | g_total_loss: 5.6157
Epoch [  160/ 4000] | d_X_loss: 0.4138 | d_Y_loss: 0.3682 | g_total_loss: 4.8214
Epoch [  170/ 4000] | d_X_loss: 0.4636 | d_Y_loss: 0.4448 | g_total_loss: 4.7001
Epoch [  180/ 4000] | d_X_loss: 0.5273 | d_Y_loss: 0.4718 | g_total_loss: 4.8506
Epoch [  190/ 4000] | d_X_loss: 0.3773 | d_Y_loss: 0.3439 | g_total_loss: 4.2842
Epoch [  200/ 4000] | d_X_loss: 0.3530 | d_Y_loss: 0.3974 | g_total_loss: 4.2591
Saved samples_cyclegan/sample-000200-X-Y.png
Saved samples_cyclegan/sample-000200-Y-X.png
Epoch [  210/ 4000] | d_X_loss: 0.2833 | d_Y_loss: 0.3571 | g_total_loss: 4.5734
Epoch [  220/ 4000] | d_X_loss: 0.4130 | d_Y_loss: 0.4411 | g_total_loss: 4.6487
Epoch [  230/ 4000] | d_X_loss: 0.3631 | d_Y_loss: 0.4969 | g_total_loss: 4.3084
Epoch [  240/ 4000] | d_X_loss: 0.4470 | d_Y_loss: 0.4444 | g_total_loss: 4.1436
Epoch [  250/ 4000] | d_X_loss: 0.4731 | d_Y_loss: 0.4438 | g_total_loss: 4.7368
Epoch [  260/ 4000] | d_X_loss: 0.4606 | d_Y_loss: 0.4062 | g_total_loss: 4.4761
Epoch [  270/ 4000] | d_X_loss: 0.3606 | d_Y_loss: 0.7543 | g_total_loss: 5.5468
Epoch [  280/ 4000] | d_X_loss: 0.4668 | d_Y_loss: 0.4361 | g_total_loss: 4.2389
Epoch [  290/ 4000] | d_X_loss: 0.4978 | d_Y_loss: 0.5004 | g_total_loss: 3.7817
Epoch [  300/ 4000] | d_X_loss: 0.3795 | d_Y_loss: 0.3967 | g_total_loss: 3.9241
Saved samples_cyclegan/sample-000300-X-Y.png
Saved samples_cyclegan/sample-000300-Y-X.png
Epoch [  310/ 4000] | d_X_loss: 0.4100 | d_Y_loss: 0.3647 | g_total_loss: 4.1676
Epoch [  320/ 4000] | d_X_loss: 0.4326 | d_Y_loss: 0.3502 | g_total_loss: 3.9641
Epoch [  330/ 4000] | d_X_loss: 0.4853 | d_Y_loss: 0.3476 | g_total_loss: 4.0044
Epoch [  340/ 4000] | d_X_loss: 0.4375 | d_Y_loss: 0.4410 | g_total_loss: 4.1737
Epoch [  350/ 4000] | d_X_loss: 0.4275 | d_Y_loss: 0.3342 | g_total_loss: 4.0098
Epoch [  360/ 4000] | d_X_loss: 0.4653 | d_Y_loss: 0.5696 | g_total_loss: 4.0303
Epoch [  370/ 4000] | d_X_loss: 0.3398 | d_Y_loss: 0.4646 | g_total_loss: 4.2594
Epoch [  380/ 4000] | d_X_loss: 0.3682 | d_Y_loss: 0.4882 | g_total_loss: 3.9387
Epoch [  390/ 4000] | d_X_loss: 0.2931 | d_Y_loss: 0.4569 | g_total_loss: 4.1545
Epoch [  400/ 4000] | d_X_loss: 0.4850 | d_Y_loss: 0.6202 | g_total_loss: 4.5546
Saved samples_cyclegan/sample-000400-X-Y.png
Saved samples_cyclegan/sample-000400-Y-X.png
Epoch [  410/ 4000] | d_X_loss: 0.5042 | d_Y_loss: 0.3679 | g_total_loss: 4.9290
Epoch [  420/ 4000] | d_X_loss: 0.4301 | d_Y_loss: 0.3999 | g_total_loss: 3.6982
Epoch [  430/ 4000] | d_X_loss: 0.4338 | d_Y_loss: 0.4282 | g_total_loss: 4.5794
Epoch [  440/ 4000] | d_X_loss: 0.4072 | d_Y_loss: 0.4188 | g_total_loss: 3.8231
Epoch [  450/ 4000] | d_X_loss: 0.3697 | d_Y_loss: 0.2884 | g_total_loss: 4.1580
Epoch [  460/ 4000] | d_X_loss: 0.3991 | d_Y_loss: 0.4370 | g_total_loss: 3.8552
Epoch [  470/ 4000] | d_X_loss: 0.4677 | d_Y_loss: 0.5313 | g_total_loss: 3.5911
Epoch [  480/ 4000] | d_X_loss: 0.4175 | d_Y_loss: 0.5062 | g_total_loss: 4.3155
Epoch [  490/ 4000] | d_X_loss: 0.3512 | d_Y_loss: 0.4501 | g_total_loss: 4.4781
Epoch [  500/ 4000] | d_X_loss: 0.4325 | d_Y_loss: 0.4325 | g_total_loss: 4.0386
Saved samples_cyclegan/sample-000500-X-Y.png
Saved samples_cyclegan/sample-000500-Y-X.png
Epoch [  510/ 4000] | d_X_loss: 0.4346 | d_Y_loss: 0.3826 | g_total_loss: 3.7624
Epoch [  520/ 4000] | d_X_loss: 0.4285 | d_Y_loss: 0.3654 | g_total_loss: 4.0454
Epoch [  530/ 4000] | d_X_loss: 0.4663 | d_Y_loss: 0.3757 | g_total_loss: 3.8003
Epoch [  540/ 4000] | d_X_loss: 0.4976 | d_Y_loss: 0.4451 | g_total_loss: 4.0646
Epoch [  550/ 4000] | d_X_loss: 0.4825 | d_Y_loss: 0.3442 | g_total_loss: 3.9697
Epoch [  560/ 4000] | d_X_loss: 0.3113 | d_Y_loss: 0.4040 | g_total_loss: 4.6918
Epoch [  570/ 4000] | d_X_loss: 0.3384 | d_Y_loss: 0.3550 | g_total_loss: 4.1619
Epoch [  580/ 4000] | d_X_loss: 0.4026 | d_Y_loss: 0.4575 | g_total_loss: 4.2190
Epoch [  590/ 4000] | d_X_loss: 0.5437 | d_Y_loss: 0.4402 | g_total_loss: 4.9007
Epoch [  600/ 4000] | d_X_loss: 0.3645 | d_Y_loss: 0.3961 | g_total_loss: 3.6801
Saved samples_cyclegan/sample-000600-X-Y.png
Saved samples_cyclegan/sample-000600-Y-X.png
Epoch [  610/ 4000] | d_X_loss: 0.3899 | d_Y_loss: 0.3716 | g_total_loss: 4.6374
Epoch [  620/ 4000] | d_X_loss: 0.5180 | d_Y_loss: 0.4266 | g_total_loss: 4.0794
Epoch [  630/ 4000] | d_X_loss: 0.4673 | d_Y_loss: 0.6168 | g_total_loss: 3.8071
Epoch [  640/ 4000] | d_X_loss: 0.4547 | d_Y_loss: 0.3096 | g_total_loss: 4.5614
Epoch [  650/ 4000] | d_X_loss: 0.5129 | d_Y_loss: 0.3784 | g_total_loss: 4.0313
Epoch [  660/ 4000] | d_X_loss: 0.4850 | d_Y_loss: 0.3121 | g_total_loss: 3.7061
Epoch [  670/ 4000] | d_X_loss: 0.3178 | d_Y_loss: 0.2921 | g_total_loss: 4.1195
Epoch [  680/ 4000] | d_X_loss: 0.4066 | d_Y_loss: 0.5008 | g_total_loss: 3.9960
Epoch [  690/ 4000] | d_X_loss: 0.4194 | d_Y_loss: 0.4699 | g_total_loss: 3.9686
Epoch [  700/ 4000] | d_X_loss: 0.3751 | d_Y_loss: 0.4119 | g_total_loss: 4.0735
Saved samples_cyclegan/sample-000700-X-Y.png
Saved samples_cyclegan/sample-000700-Y-X.png
Epoch [  710/ 4000] | d_X_loss: 0.5532 | d_Y_loss: 0.3772 | g_total_loss: 4.1204
Epoch [  720/ 4000] | d_X_loss: 0.4983 | d_Y_loss: 0.4649 | g_total_loss: 3.8425
Epoch [  730/ 4000] | d_X_loss: 0.4583 | d_Y_loss: 0.3580 | g_total_loss: 3.9373
Epoch [  740/ 4000] | d_X_loss: 0.5571 | d_Y_loss: 0.5231 | g_total_loss: 4.1644
Epoch [  750/ 4000] | d_X_loss: 0.3470 | d_Y_loss: 0.3779 | g_total_loss: 4.0781
Epoch [  760/ 4000] | d_X_loss: 0.4300 | d_Y_loss: 0.4396 | g_total_loss: 3.7001
Epoch [  770/ 4000] | d_X_loss: 0.4084 | d_Y_loss: 0.2979 | g_total_loss: 4.0096
Epoch [  780/ 4000] | d_X_loss: 0.4412 | d_Y_loss: 0.4371 | g_total_loss: 4.0965
Epoch [  790/ 4000] | d_X_loss: 0.3288 | d_Y_loss: 0.4292 | g_total_loss: 4.0511
Epoch [  800/ 4000] | d_X_loss: 0.3966 | d_Y_loss: 0.4337 | g_total_loss: 3.4207
Saved samples_cyclegan/sample-000800-X-Y.png
Saved samples_cyclegan/sample-000800-Y-X.png
Epoch [  810/ 4000] | d_X_loss: 0.3714 | d_Y_loss: 0.5531 | g_total_loss: 3.3714
Epoch [  820/ 4000] | d_X_loss: 0.4521 | d_Y_loss: 0.4413 | g_total_loss: 3.9536
Epoch [  830/ 4000] | d_X_loss: 0.4333 | d_Y_loss: 0.4751 | g_total_loss: 3.5833
Epoch [  840/ 4000] | d_X_loss: 0.3427 | d_Y_loss: 0.3983 | g_total_loss: 4.4171
Epoch [  850/ 4000] | d_X_loss: 0.4748 | d_Y_loss: 0.3613 | g_total_loss: 4.2533
Epoch [  860/ 4000] | d_X_loss: 0.4127 | d_Y_loss: 0.3467 | g_total_loss: 3.7732
Epoch [  870/ 4000] | d_X_loss: 0.4778 | d_Y_loss: 0.3335 | g_total_loss: 3.9159
Epoch [  880/ 4000] | d_X_loss: 0.3983 | d_Y_loss: 0.5284 | g_total_loss: 3.9287
Epoch [  890/ 4000] | d_X_loss: 0.4359 | d_Y_loss: 0.4131 | g_total_loss: 3.6775
Epoch [  900/ 4000] | d_X_loss: 0.4517 | d_Y_loss: 0.3534 | g_total_loss: 4.0543
Saved samples_cyclegan/sample-000900-X-Y.png
Saved samples_cyclegan/sample-000900-Y-X.png
Epoch [  910/ 4000] | d_X_loss: 0.4132 | d_Y_loss: 0.3711 | g_total_loss: 3.5335
Epoch [  920/ 4000] | d_X_loss: 0.4371 | d_Y_loss: 0.7068 | g_total_loss: 3.7064
Epoch [  930/ 4000] | d_X_loss: 0.4421 | d_Y_loss: 0.4297 | g_total_loss: 3.7903
Epoch [  940/ 4000] | d_X_loss: 0.5256 | d_Y_loss: 0.3409 | g_total_loss: 4.2808
Epoch [  950/ 4000] | d_X_loss: 0.4924 | d_Y_loss: 0.5120 | g_total_loss: 4.0589
Epoch [  960/ 4000] | d_X_loss: 0.4503 | d_Y_loss: 0.3685 | g_total_loss: 3.5139
Epoch [  970/ 4000] | d_X_loss: 0.4898 | d_Y_loss: 0.4274 | g_total_loss: 3.8152
Epoch [  980/ 4000] | d_X_loss: 0.3585 | d_Y_loss: 0.4812 | g_total_loss: 3.3480
Epoch [  990/ 4000] | d_X_loss: 0.3314 | d_Y_loss: 0.2865 | g_total_loss: 4.0738
Epoch [ 1000/ 4000] | d_X_loss: 0.4100 | d_Y_loss: 0.4067 | g_total_loss: 3.6095
Saved samples_cyclegan/sample-001000-X-Y.png
Saved samples_cyclegan/sample-001000-Y-X.png
Epoch [ 1010/ 4000] | d_X_loss: 0.5186 | d_Y_loss: 0.3508 | g_total_loss: 4.1594
Epoch [ 1020/ 4000] | d_X_loss: 0.4703 | d_Y_loss: 0.4720 | g_total_loss: 4.1957
Epoch [ 1030/ 4000] | d_X_loss: 0.3464 | d_Y_loss: 0.3117 | g_total_loss: 3.6171
Epoch [ 1040/ 4000] | d_X_loss: 0.4272 | d_Y_loss: 0.2369 | g_total_loss: 3.7737
Epoch [ 1050/ 4000] | d_X_loss: 0.5727 | d_Y_loss: 0.3462 | g_total_loss: 4.3117
Epoch [ 1060/ 4000] | d_X_loss: 0.4288 | d_Y_loss: 0.6680 | g_total_loss: 3.3234
Epoch [ 1070/ 4000] | d_X_loss: 0.3597 | d_Y_loss: 0.3552 | g_total_loss: 3.8147
Epoch [ 1080/ 4000] | d_X_loss: 0.3398 | d_Y_loss: 0.3865 | g_total_loss: 4.4149
Epoch [ 1090/ 4000] | d_X_loss: 0.4148 | d_Y_loss: 0.2571 | g_total_loss: 4.1151
Epoch [ 1100/ 4000] | d_X_loss: 0.3463 | d_Y_loss: 0.3506 | g_total_loss: 3.5968
Saved samples_cyclegan/sample-001100-X-Y.png
Saved samples_cyclegan/sample-001100-Y-X.png
Epoch [ 1110/ 4000] | d_X_loss: 0.4116 | d_Y_loss: 0.3019 | g_total_loss: 3.7438
Epoch [ 1120/ 4000] | d_X_loss: 0.3868 | d_Y_loss: 0.3859 | g_total_loss: 4.0059
Epoch [ 1130/ 4000] | d_X_loss: 0.3767 | d_Y_loss: 0.3889 | g_total_loss: 3.5743
Epoch [ 1140/ 4000] | d_X_loss: 0.5767 | d_Y_loss: 0.3833 | g_total_loss: 3.7889
Epoch [ 1150/ 4000] | d_X_loss: 0.4731 | d_Y_loss: 0.3772 | g_total_loss: 3.5062
Epoch [ 1160/ 4000] | d_X_loss: 0.4634 | d_Y_loss: 0.3134 | g_total_loss: 4.1293
Epoch [ 1170/ 4000] | d_X_loss: 0.4096 | d_Y_loss: 0.3610 | g_total_loss: 3.7504
Epoch [ 1180/ 4000] | d_X_loss: 0.3584 | d_Y_loss: 0.3317 | g_total_loss: 3.5340
Epoch [ 1190/ 4000] | d_X_loss: 0.3846 | d_Y_loss: 0.3783 | g_total_loss: 4.0327
Epoch [ 1200/ 4000] | d_X_loss: 0.4083 | d_Y_loss: 0.3054 | g_total_loss: 4.2000
Saved samples_cyclegan/sample-001200-X-Y.png
Saved samples_cyclegan/sample-001200-Y-X.png
Epoch [ 1210/ 4000] | d_X_loss: 0.4354 | d_Y_loss: 0.3495 | g_total_loss: 3.5759
Epoch [ 1220/ 4000] | d_X_loss: 0.3748 | d_Y_loss: 0.3762 | g_total_loss: 3.9294
Epoch [ 1230/ 4000] | d_X_loss: 0.3367 | d_Y_loss: 0.4489 | g_total_loss: 4.1623
Epoch [ 1240/ 4000] | d_X_loss: 0.3135 | d_Y_loss: 0.3957 | g_total_loss: 3.2557
Epoch [ 1250/ 4000] | d_X_loss: 0.4706 | d_Y_loss: 0.2646 | g_total_loss: 3.4710
Epoch [ 1260/ 4000] | d_X_loss: 0.3830 | d_Y_loss: 0.3323 | g_total_loss: 3.7209
Epoch [ 1270/ 4000] | d_X_loss: 0.3658 | d_Y_loss: 0.3719 | g_total_loss: 4.8712
Epoch [ 1280/ 4000] | d_X_loss: 0.2974 | d_Y_loss: 0.4189 | g_total_loss: 4.8283
Epoch [ 1290/ 4000] | d_X_loss: 0.4022 | d_Y_loss: 0.2567 | g_total_loss: 4.2263
Epoch [ 1300/ 4000] | d_X_loss: 0.4013 | d_Y_loss: 0.3799 | g_total_loss: 3.7673
Saved samples_cyclegan/sample-001300-X-Y.png
Saved samples_cyclegan/sample-001300-Y-X.png
Epoch [ 1310/ 4000] | d_X_loss: 0.4453 | d_Y_loss: 0.3027 | g_total_loss: 3.9327
Epoch [ 1320/ 4000] | d_X_loss: 0.4092 | d_Y_loss: 0.3367 | g_total_loss: 3.5698
Epoch [ 1330/ 4000] | d_X_loss: 0.4051 | d_Y_loss: 0.3373 | g_total_loss: 3.9174
Epoch [ 1340/ 4000] | d_X_loss: 0.4716 | d_Y_loss: 0.3057 | g_total_loss: 3.8844
Epoch [ 1350/ 4000] | d_X_loss: 0.3038 | d_Y_loss: 0.3413 | g_total_loss: 3.8874
Epoch [ 1360/ 4000] | d_X_loss: 0.4780 | d_Y_loss: 0.2594 | g_total_loss: 3.6004
Epoch [ 1370/ 4000] | d_X_loss: 0.4047 | d_Y_loss: 0.3518 | g_total_loss: 4.6455
Epoch [ 1380/ 4000] | d_X_loss: 0.4479 | d_Y_loss: 0.4917 | g_total_loss: 4.0354
Epoch [ 1390/ 4000] | d_X_loss: 0.3422 | d_Y_loss: 0.2367 | g_total_loss: 3.7476
Epoch [ 1400/ 4000] | d_X_loss: 0.3821 | d_Y_loss: 0.4471 | g_total_loss: 3.9943
Saved samples_cyclegan/sample-001400-X-Y.png
Saved samples_cyclegan/sample-001400-Y-X.png
Epoch [ 1410/ 4000] | d_X_loss: 0.2802 | d_Y_loss: 0.3174 | g_total_loss: 3.3933
Epoch [ 1420/ 4000] | d_X_loss: 0.3492 | d_Y_loss: 0.2663 | g_total_loss: 4.3483
Epoch [ 1430/ 4000] | d_X_loss: 0.5070 | d_Y_loss: 0.3689 | g_total_loss: 3.6532
Epoch [ 1440/ 4000] | d_X_loss: 0.3318 | d_Y_loss: 0.2989 | g_total_loss: 3.9910
Epoch [ 1450/ 4000] | d_X_loss: 0.3151 | d_Y_loss: 0.2454 | g_total_loss: 3.9948
Epoch [ 1460/ 4000] | d_X_loss: 0.2559 | d_Y_loss: 0.4991 | g_total_loss: 3.3297
Epoch [ 1470/ 4000] | d_X_loss: 0.3627 | d_Y_loss: 0.3085 | g_total_loss: 3.6701
Epoch [ 1480/ 4000] | d_X_loss: 0.4403 | d_Y_loss: 0.2893 | g_total_loss: 3.0209
Epoch [ 1490/ 4000] | d_X_loss: 0.3969 | d_Y_loss: 0.3619 | g_total_loss: 3.5297
Epoch [ 1500/ 4000] | d_X_loss: 0.3534 | d_Y_loss: 0.4633 | g_total_loss: 4.6977
Saved samples_cyclegan/sample-001500-X-Y.png
Saved samples_cyclegan/sample-001500-Y-X.png
Epoch [ 1510/ 4000] | d_X_loss: 0.4529 | d_Y_loss: 0.2683 | g_total_loss: 3.5203
Epoch [ 1520/ 4000] | d_X_loss: 0.3351 | d_Y_loss: 0.3328 | g_total_loss: 3.7003
Epoch [ 1530/ 4000] | d_X_loss: 0.4044 | d_Y_loss: 0.2457 | g_total_loss: 3.5270
Epoch [ 1540/ 4000] | d_X_loss: 0.3239 | d_Y_loss: 0.2747 | g_total_loss: 3.5087
Epoch [ 1550/ 4000] | d_X_loss: 0.3362 | d_Y_loss: 0.3768 | g_total_loss: 4.9243
Epoch [ 1560/ 4000] | d_X_loss: 0.2995 | d_Y_loss: 0.4274 | g_total_loss: 4.3883
Epoch [ 1570/ 4000] | d_X_loss: 0.3536 | d_Y_loss: 0.2188 | g_total_loss: 4.6758
Epoch [ 1580/ 4000] | d_X_loss: 0.4287 | d_Y_loss: 0.3455 | g_total_loss: 4.5181
Epoch [ 1590/ 4000] | d_X_loss: 0.3647 | d_Y_loss: 0.1996 | g_total_loss: 3.8649
Epoch [ 1600/ 4000] | d_X_loss: 0.3920 | d_Y_loss: 0.1638 | g_total_loss: 3.9747
Saved samples_cyclegan/sample-001600-X-Y.png
Saved samples_cyclegan/sample-001600-Y-X.png
Epoch [ 1610/ 4000] | d_X_loss: 0.3506 | d_Y_loss: 0.1973 | g_total_loss: 4.1645
Epoch [ 1620/ 4000] | d_X_loss: 0.2594 | d_Y_loss: 0.2510 | g_total_loss: 4.3657
Epoch [ 1630/ 4000] | d_X_loss: 0.3317 | d_Y_loss: 0.2214 | g_total_loss: 3.9909
Epoch [ 1640/ 4000] | d_X_loss: 0.2968 | d_Y_loss: 0.2595 | g_total_loss: 4.1298
Epoch [ 1650/ 4000] | d_X_loss: 0.3198 | d_Y_loss: 0.1320 | g_total_loss: 5.0270
Epoch [ 1660/ 4000] | d_X_loss: 0.3024 | d_Y_loss: 0.2426 | g_total_loss: 4.0094
Epoch [ 1670/ 4000] | d_X_loss: 0.2632 | d_Y_loss: 0.2956 | g_total_loss: 3.9935
Epoch [ 1680/ 4000] | d_X_loss: 0.3003 | d_Y_loss: 0.2843 | g_total_loss: 4.2955
Epoch [ 1690/ 4000] | d_X_loss: 0.3582 | d_Y_loss: 0.3504 | g_total_loss: 4.1516
Epoch [ 1700/ 4000] | d_X_loss: 0.1940 | d_Y_loss: 0.2469 | g_total_loss: 4.2701
Saved samples_cyclegan/sample-001700-X-Y.png
Saved samples_cyclegan/sample-001700-Y-X.png
Epoch [ 1710/ 4000] | d_X_loss: 0.2568 | d_Y_loss: 0.2306 | g_total_loss: 4.6020
Epoch [ 1720/ 4000] | d_X_loss: 0.3588 | d_Y_loss: 0.2291 | g_total_loss: 4.3582
Epoch [ 1730/ 4000] | d_X_loss: 0.2746 | d_Y_loss: 0.1809 | g_total_loss: 4.9615
Epoch [ 1740/ 4000] | d_X_loss: 0.3345 | d_Y_loss: 0.2796 | g_total_loss: 3.8268
Epoch [ 1750/ 4000] | d_X_loss: 0.2173 | d_Y_loss: 0.2468 | g_total_loss: 4.6300
Epoch [ 1760/ 4000] | d_X_loss: 0.3532 | d_Y_loss: 0.4676 | g_total_loss: 4.0815
Epoch [ 1770/ 4000] | d_X_loss: 0.4857 | d_Y_loss: 0.2454 | g_total_loss: 6.0277
Epoch [ 1780/ 4000] | d_X_loss: 0.3690 | d_Y_loss: 0.1703 | g_total_loss: 3.8203
Epoch [ 1790/ 4000] | d_X_loss: 0.2072 | d_Y_loss: 0.2146 | g_total_loss: 4.6067
Epoch [ 1800/ 4000] | d_X_loss: 0.3226 | d_Y_loss: 0.3547 | g_total_loss: 3.6608
Saved samples_cyclegan/sample-001800-X-Y.png
Saved samples_cyclegan/sample-001800-Y-X.png
Epoch [ 1810/ 4000] | d_X_loss: 0.3613 | d_Y_loss: 0.2225 | g_total_loss: 4.8653
Epoch [ 1820/ 4000] | d_X_loss: 0.2916 | d_Y_loss: 0.1634 | g_total_loss: 4.5669
Epoch [ 1830/ 4000] | d_X_loss: 0.4177 | d_Y_loss: 0.2754 | g_total_loss: 4.7970
Epoch [ 1840/ 4000] | d_X_loss: 0.2460 | d_Y_loss: 0.2808 | g_total_loss: 3.4729
Epoch [ 1850/ 4000] | d_X_loss: 0.4846 | d_Y_loss: 0.2273 | g_total_loss: 3.6149
Epoch [ 1860/ 4000] | d_X_loss: 0.3198 | d_Y_loss: 0.1878 | g_total_loss: 4.1438
Epoch [ 1870/ 4000] | d_X_loss: 0.2344 | d_Y_loss: 0.1614 | g_total_loss: 4.0786
Epoch [ 1880/ 4000] | d_X_loss: 0.3318 | d_Y_loss: 0.1791 | g_total_loss: 3.5380
Epoch [ 1890/ 4000] | d_X_loss: 0.2643 | d_Y_loss: 0.2098 | g_total_loss: 5.2291
Epoch [ 1900/ 4000] | d_X_loss: 0.2742 | d_Y_loss: 0.1931 | g_total_loss: 3.3093
Saved samples_cyclegan/sample-001900-X-Y.png
Saved samples_cyclegan/sample-001900-Y-X.png
Epoch [ 1910/ 4000] | d_X_loss: 0.3255 | d_Y_loss: 0.2252 | g_total_loss: 4.1855
Epoch [ 1920/ 4000] | d_X_loss: 0.2974 | d_Y_loss: 0.1735 | g_total_loss: 3.6111
Epoch [ 1930/ 4000] | d_X_loss: 0.3180 | d_Y_loss: 0.2527 | g_total_loss: 3.7145
Epoch [ 1940/ 4000] | d_X_loss: 0.2691 | d_Y_loss: 0.2199 | g_total_loss: 4.2059
Epoch [ 1950/ 4000] | d_X_loss: 0.3740 | d_Y_loss: 0.3629 | g_total_loss: 3.0767
Epoch [ 1960/ 4000] | d_X_loss: 0.3498 | d_Y_loss: 0.2249 | g_total_loss: 4.7678
Epoch [ 1970/ 4000] | d_X_loss: 0.1883 | d_Y_loss: 0.1720 | g_total_loss: 4.1730
Epoch [ 1980/ 4000] | d_X_loss: 0.3587 | d_Y_loss: 0.1563 | g_total_loss: 4.9254
Epoch [ 1990/ 4000] | d_X_loss: 0.3028 | d_Y_loss: 0.2737 | g_total_loss: 3.6923
Epoch [ 2000/ 4000] | d_X_loss: 0.2326 | d_Y_loss: 0.2510 | g_total_loss: 4.0155
Saved samples_cyclegan/sample-002000-X-Y.png
Saved samples_cyclegan/sample-002000-Y-X.png
Epoch [ 2010/ 4000] | d_X_loss: 0.3032 | d_Y_loss: 0.2023 | g_total_loss: 4.4918
Epoch [ 2020/ 4000] | d_X_loss: 0.1963 | d_Y_loss: 0.2506 | g_total_loss: 4.5897
Epoch [ 2030/ 4000] | d_X_loss: 0.2473 | d_Y_loss: 0.2489 | g_total_loss: 4.0731
Epoch [ 2040/ 4000] | d_X_loss: 0.2041 | d_Y_loss: 0.1640 | g_total_loss: 4.1864
Epoch [ 2050/ 4000] | d_X_loss: 0.2439 | d_Y_loss: 0.2661 | g_total_loss: 3.7701
Epoch [ 2060/ 4000] | d_X_loss: 0.2194 | d_Y_loss: 0.1643 | g_total_loss: 3.6900
Epoch [ 2070/ 4000] | d_X_loss: 0.2717 | d_Y_loss: 0.2902 | g_total_loss: 4.0376
Epoch [ 2080/ 4000] | d_X_loss: 0.2790 | d_Y_loss: 0.1770 | g_total_loss: 4.6142
Epoch [ 2090/ 4000] | d_X_loss: 0.2530 | d_Y_loss: 0.2468 | g_total_loss: 3.6647
Epoch [ 2100/ 4000] | d_X_loss: 0.3336 | d_Y_loss: 0.2750 | g_total_loss: 4.5134
Saved samples_cyclegan/sample-002100-X-Y.png
Saved samples_cyclegan/sample-002100-Y-X.png
Epoch [ 2110/ 4000] | d_X_loss: 0.2688 | d_Y_loss: 0.1741 | g_total_loss: 4.2551
Epoch [ 2120/ 4000] | d_X_loss: 0.2168 | d_Y_loss: 0.1680 | g_total_loss: 5.2604
Epoch [ 2130/ 4000] | d_X_loss: 0.2588 | d_Y_loss: 0.3086 | g_total_loss: 5.2141
Epoch [ 2140/ 4000] | d_X_loss: 1.1018 | d_Y_loss: 0.2042 | g_total_loss: 2.9630
Epoch [ 2150/ 4000] | d_X_loss: 0.2452 | d_Y_loss: 0.2129 | g_total_loss: 4.4640
Epoch [ 2160/ 4000] | d_X_loss: 0.2799 | d_Y_loss: 0.2164 | g_total_loss: 4.0459
Epoch [ 2170/ 4000] | d_X_loss: 0.2426 | d_Y_loss: 0.1698 | g_total_loss: 3.7974
Epoch [ 2180/ 4000] | d_X_loss: 0.3650 | d_Y_loss: 0.1941 | g_total_loss: 3.4241
Epoch [ 2190/ 4000] | d_X_loss: 0.2269 | d_Y_loss: 0.2949 | g_total_loss: 4.9501
Epoch [ 2200/ 4000] | d_X_loss: 0.2032 | d_Y_loss: 0.2354 | g_total_loss: 3.5302
Saved samples_cyclegan/sample-002200-X-Y.png
Saved samples_cyclegan/sample-002200-Y-X.png
Epoch [ 2210/ 4000] | d_X_loss: 0.2511 | d_Y_loss: 0.1932 | g_total_loss: 4.3024
Epoch [ 2220/ 4000] | d_X_loss: 0.2372 | d_Y_loss: 0.1912 | g_total_loss: 3.9535
Epoch [ 2230/ 4000] | d_X_loss: 0.2096 | d_Y_loss: 0.2804 | g_total_loss: 4.5337
Epoch [ 2240/ 4000] | d_X_loss: 0.2868 | d_Y_loss: 0.1142 | g_total_loss: 4.2860
Epoch [ 2250/ 4000] | d_X_loss: 0.2170 | d_Y_loss: 0.1721 | g_total_loss: 3.9165
Epoch [ 2260/ 4000] | d_X_loss: 0.2236 | d_Y_loss: 0.1512 | g_total_loss: 4.4272
Epoch [ 2270/ 4000] | d_X_loss: 0.2206 | d_Y_loss: 0.1238 | g_total_loss: 3.7345
Epoch [ 2280/ 4000] | d_X_loss: 0.2072 | d_Y_loss: 0.2947 | g_total_loss: 2.9466
Epoch [ 2290/ 4000] | d_X_loss: 0.3428 | d_Y_loss: 0.1982 | g_total_loss: 3.8461
Epoch [ 2300/ 4000] | d_X_loss: 0.2436 | d_Y_loss: 0.1498 | g_total_loss: 3.9561
Saved samples_cyclegan/sample-002300-X-Y.png
Saved samples_cyclegan/sample-002300-Y-X.png
Epoch [ 2310/ 4000] | d_X_loss: 0.2902 | d_Y_loss: 0.2342 | g_total_loss: 3.8383
Epoch [ 2320/ 4000] | d_X_loss: 0.2796 | d_Y_loss: 0.2179 | g_total_loss: 4.4457
Epoch [ 2330/ 4000] | d_X_loss: 0.2091 | d_Y_loss: 0.3622 | g_total_loss: 3.3021
Epoch [ 2340/ 4000] | d_X_loss: 0.2410 | d_Y_loss: 0.2246 | g_total_loss: 4.2316
Epoch [ 2350/ 4000] | d_X_loss: 0.3125 | d_Y_loss: 0.1924 | g_total_loss: 4.1430
Epoch [ 2360/ 4000] | d_X_loss: 0.1987 | d_Y_loss: 0.1597 | g_total_loss: 4.5396
Epoch [ 2370/ 4000] | d_X_loss: 0.2255 | d_Y_loss: 0.1740 | g_total_loss: 3.7733
Epoch [ 2380/ 4000] | d_X_loss: 0.3904 | d_Y_loss: 0.1687 | g_total_loss: 3.1419
Epoch [ 2390/ 4000] | d_X_loss: 0.1815 | d_Y_loss: 0.2071 | g_total_loss: 4.7013
Epoch [ 2400/ 4000] | d_X_loss: 0.2674 | d_Y_loss: 0.2049 | g_total_loss: 4.4468
Saved samples_cyclegan/sample-002400-X-Y.png
Saved samples_cyclegan/sample-002400-Y-X.png
Epoch [ 2410/ 4000] | d_X_loss: 0.3390 | d_Y_loss: 0.2999 | g_total_loss: 4.7052
Epoch [ 2420/ 4000] | d_X_loss: 0.3919 | d_Y_loss: 0.1226 | g_total_loss: 4.1392
Epoch [ 2430/ 4000] | d_X_loss: 0.2567 | d_Y_loss: 0.1687 | g_total_loss: 4.0582
Epoch [ 2440/ 4000] | d_X_loss: 0.2470 | d_Y_loss: 0.5112 | g_total_loss: 5.8621
Epoch [ 2450/ 4000] | d_X_loss: 0.2489 | d_Y_loss: 0.2190 | g_total_loss: 3.9979
Epoch [ 2460/ 4000] | d_X_loss: 0.2051 | d_Y_loss: 0.1511 | g_total_loss: 3.8372
Epoch [ 2470/ 4000] | d_X_loss: 0.2389 | d_Y_loss: 0.1378 | g_total_loss: 3.8707
Epoch [ 2480/ 4000] | d_X_loss: 0.2338 | d_Y_loss: 0.1582 | g_total_loss: 3.7847
Epoch [ 2490/ 4000] | d_X_loss: 0.3016 | d_Y_loss: 0.1276 | g_total_loss: 4.8564
Epoch [ 2500/ 4000] | d_X_loss: 0.2886 | d_Y_loss: 0.2735 | g_total_loss: 4.7964
Saved samples_cyclegan/sample-002500-X-Y.png
Saved samples_cyclegan/sample-002500-Y-X.png
Epoch [ 2510/ 4000] | d_X_loss: 0.2541 | d_Y_loss: 0.1899 | g_total_loss: 3.5550
Epoch [ 2520/ 4000] | d_X_loss: 0.2279 | d_Y_loss: 0.1843 | g_total_loss: 4.4447
Epoch [ 2530/ 4000] | d_X_loss: 0.3426 | d_Y_loss: 0.1744 | g_total_loss: 3.8378
Epoch [ 2540/ 4000] | d_X_loss: 0.2202 | d_Y_loss: 0.1715 | g_total_loss: 3.2370
Epoch [ 2550/ 4000] | d_X_loss: 0.1619 | d_Y_loss: 0.1729 | g_total_loss: 4.5417
Epoch [ 2560/ 4000] | d_X_loss: 0.2503 | d_Y_loss: 0.4097 | g_total_loss: 3.4391
Epoch [ 2570/ 4000] | d_X_loss: 0.1655 | d_Y_loss: 0.1431 | g_total_loss: 4.1548
Epoch [ 2580/ 4000] | d_X_loss: 0.1654 | d_Y_loss: 0.1637 | g_total_loss: 3.9657
Epoch [ 2590/ 4000] | d_X_loss: 0.1727 | d_Y_loss: 0.1063 | g_total_loss: 3.6826
Epoch [ 2600/ 4000] | d_X_loss: 0.2200 | d_Y_loss: 0.1501 | g_total_loss: 3.7266
Saved samples_cyclegan/sample-002600-X-Y.png
Saved samples_cyclegan/sample-002600-Y-X.png
Epoch [ 2610/ 4000] | d_X_loss: 0.1886 | d_Y_loss: 0.1938 | g_total_loss: 3.3696
Epoch [ 2620/ 4000] | d_X_loss: 0.2725 | d_Y_loss: 0.0985 | g_total_loss: 3.4911
Epoch [ 2630/ 4000] | d_X_loss: 0.2149 | d_Y_loss: 0.1486 | g_total_loss: 3.5930
Epoch [ 2640/ 4000] | d_X_loss: 0.1617 | d_Y_loss: 0.1663 | g_total_loss: 4.7570
Epoch [ 2650/ 4000] | d_X_loss: 0.1862 | d_Y_loss: 0.1999 | g_total_loss: 4.2615
Epoch [ 2660/ 4000] | d_X_loss: 0.2618 | d_Y_loss: 0.1563 | g_total_loss: 3.2289
Epoch [ 2670/ 4000] | d_X_loss: 0.3090 | d_Y_loss: 0.2034 | g_total_loss: 5.3066
Epoch [ 2680/ 4000] | d_X_loss: 0.2491 | d_Y_loss: 0.1294 | g_total_loss: 3.5480
Epoch [ 2690/ 4000] | d_X_loss: 0.1753 | d_Y_loss: 0.2536 | g_total_loss: 3.7334
Epoch [ 2700/ 4000] | d_X_loss: 0.1680 | d_Y_loss: 0.1466 | g_total_loss: 4.7342
Saved samples_cyclegan/sample-002700-X-Y.png
Saved samples_cyclegan/sample-002700-Y-X.png
Epoch [ 2710/ 4000] | d_X_loss: 0.2538 | d_Y_loss: 0.1211 | g_total_loss: 4.8353
Epoch [ 2720/ 4000] | d_X_loss: 0.0996 | d_Y_loss: 0.1633 | g_total_loss: 4.1933
Epoch [ 2730/ 4000] | d_X_loss: 0.1955 | d_Y_loss: 0.3256 | g_total_loss: 4.7507
Epoch [ 2740/ 4000] | d_X_loss: 0.2422 | d_Y_loss: 0.1407 | g_total_loss: 3.7285
Epoch [ 2750/ 4000] | d_X_loss: 0.1927 | d_Y_loss: 0.1648 | g_total_loss: 3.9994
Epoch [ 2760/ 4000] | d_X_loss: 0.3790 | d_Y_loss: 0.1709 | g_total_loss: 5.3863
Epoch [ 2770/ 4000] | d_X_loss: 0.1408 | d_Y_loss: 0.0896 | g_total_loss: 3.9541
Epoch [ 2780/ 4000] | d_X_loss: 0.1292 | d_Y_loss: 0.1419 | g_total_loss: 4.3423
Epoch [ 2790/ 4000] | d_X_loss: 0.2249 | d_Y_loss: 0.1125 | g_total_loss: 3.5974
Epoch [ 2800/ 4000] | d_X_loss: 0.1269 | d_Y_loss: 0.1301 | g_total_loss: 3.5439
Saved samples_cyclegan/sample-002800-X-Y.png
Saved samples_cyclegan/sample-002800-Y-X.png
Epoch [ 2810/ 4000] | d_X_loss: 0.2377 | d_Y_loss: 0.2841 | g_total_loss: 4.5682
Epoch [ 2820/ 4000] | d_X_loss: 0.1758 | d_Y_loss: 0.1675 | g_total_loss: 3.8426
Epoch [ 2830/ 4000] | d_X_loss: 0.2347 | d_Y_loss: 0.1477 | g_total_loss: 3.8532
Epoch [ 2840/ 4000] | d_X_loss: 0.1106 | d_Y_loss: 0.1322 | g_total_loss: 4.5131
Epoch [ 2850/ 4000] | d_X_loss: 0.1688 | d_Y_loss: 0.1082 | g_total_loss: 4.6591
Epoch [ 2860/ 4000] | d_X_loss: 0.1864 | d_Y_loss: 0.1272 | g_total_loss: 4.3846
Epoch [ 2870/ 4000] | d_X_loss: 0.2201 | d_Y_loss: 0.1917 | g_total_loss: 3.8976
Epoch [ 2880/ 4000] | d_X_loss: 0.2517 | d_Y_loss: 0.1159 | g_total_loss: 3.9381
Epoch [ 2890/ 4000] | d_X_loss: 0.1806 | d_Y_loss: 0.1301 | g_total_loss: 3.8789
Epoch [ 2900/ 4000] | d_X_loss: 0.1654 | d_Y_loss: 0.1572 | g_total_loss: 3.3393
Saved samples_cyclegan/sample-002900-X-Y.png
Saved samples_cyclegan/sample-002900-Y-X.png
Epoch [ 2910/ 4000] | d_X_loss: 0.0870 | d_Y_loss: 0.1557 | g_total_loss: 4.2132
Epoch [ 2920/ 4000] | d_X_loss: 0.2226 | d_Y_loss: 0.1152 | g_total_loss: 4.7609
Epoch [ 2930/ 4000] | d_X_loss: 0.3079 | d_Y_loss: 0.1482 | g_total_loss: 4.6334
Epoch [ 2940/ 4000] | d_X_loss: 0.1700 | d_Y_loss: 0.1071 | g_total_loss: 5.0426
Epoch [ 2950/ 4000] | d_X_loss: 0.2182 | d_Y_loss: 0.1710 | g_total_loss: 3.3385
Epoch [ 2960/ 4000] | d_X_loss: 0.3085 | d_Y_loss: 0.1758 | g_total_loss: 3.8001
Epoch [ 2970/ 4000] | d_X_loss: 0.1698 | d_Y_loss: 0.1228 | g_total_loss: 4.2666
Epoch [ 2980/ 4000] | d_X_loss: 0.2651 | d_Y_loss: 0.0903 | g_total_loss: 4.9024
Epoch [ 2990/ 4000] | d_X_loss: 0.2132 | d_Y_loss: 0.2027 | g_total_loss: 4.7811
Epoch [ 3000/ 4000] | d_X_loss: 0.2283 | d_Y_loss: 0.1506 | g_total_loss: 3.9421
Saved samples_cyclegan/sample-003000-X-Y.png
Saved samples_cyclegan/sample-003000-Y-X.png
Epoch [ 3010/ 4000] | d_X_loss: 0.1785 | d_Y_loss: 0.0923 | g_total_loss: 4.1808
Epoch [ 3020/ 4000] | d_X_loss: 0.1670 | d_Y_loss: 0.2868 | g_total_loss: 3.8953
Epoch [ 3030/ 4000] | d_X_loss: 0.1161 | d_Y_loss: 0.1311 | g_total_loss: 5.3665
Epoch [ 3040/ 4000] | d_X_loss: 0.1252 | d_Y_loss: 0.1173 | g_total_loss: 4.1214
Epoch [ 3050/ 4000] | d_X_loss: 0.2958 | d_Y_loss: 0.1573 | g_total_loss: 4.5007
Epoch [ 3060/ 4000] | d_X_loss: 0.2829 | d_Y_loss: 0.0892 | g_total_loss: 4.2669
Epoch [ 3070/ 4000] | d_X_loss: 0.2496 | d_Y_loss: 0.0957 | g_total_loss: 4.1041
Epoch [ 3080/ 4000] | d_X_loss: 0.1539 | d_Y_loss: 0.2016 | g_total_loss: 3.4195
Epoch [ 3090/ 4000] | d_X_loss: 0.1698 | d_Y_loss: 0.1879 | g_total_loss: 3.6788
Epoch [ 3100/ 4000] | d_X_loss: 0.1325 | d_Y_loss: 0.1203 | g_total_loss: 4.1985
Saved samples_cyclegan/sample-003100-X-Y.png
Saved samples_cyclegan/sample-003100-Y-X.png
Epoch [ 3110/ 4000] | d_X_loss: 0.1814 | d_Y_loss: 0.0717 | g_total_loss: 3.6764
Epoch [ 3120/ 4000] | d_X_loss: 0.2054 | d_Y_loss: 0.1058 | g_total_loss: 3.5443
Epoch [ 3130/ 4000] | d_X_loss: 0.1768 | d_Y_loss: 0.1225 | g_total_loss: 3.6631
Epoch [ 3140/ 4000] | d_X_loss: 0.1612 | d_Y_loss: 0.1082 | g_total_loss: 4.1504
Epoch [ 3150/ 4000] | d_X_loss: 0.1872 | d_Y_loss: 0.1128 | g_total_loss: 3.7797
Epoch [ 3160/ 4000] | d_X_loss: 0.1664 | d_Y_loss: 0.2579 | g_total_loss: 4.8262
Epoch [ 3170/ 4000] | d_X_loss: 0.2603 | d_Y_loss: 0.1617 | g_total_loss: 4.3776
Epoch [ 3180/ 4000] | d_X_loss: 0.1878 | d_Y_loss: 0.0953 | g_total_loss: 3.8488
Epoch [ 3190/ 4000] | d_X_loss: 0.1712 | d_Y_loss: 0.0904 | g_total_loss: 4.3706
Epoch [ 3200/ 4000] | d_X_loss: 0.1596 | d_Y_loss: 0.1179 | g_total_loss: 3.5950
Saved samples_cyclegan/sample-003200-X-Y.png
Saved samples_cyclegan/sample-003200-Y-X.png
Epoch [ 3210/ 4000] | d_X_loss: 0.1859 | d_Y_loss: 0.0787 | g_total_loss: 4.1705
Epoch [ 3220/ 4000] | d_X_loss: 0.1898 | d_Y_loss: 0.1567 | g_total_loss: 4.6342
Epoch [ 3230/ 4000] | d_X_loss: 0.1824 | d_Y_loss: 0.1415 | g_total_loss: 4.2547
Epoch [ 3240/ 4000] | d_X_loss: 0.1255 | d_Y_loss: 0.1042 | g_total_loss: 3.9501
Epoch [ 3250/ 4000] | d_X_loss: 0.1713 | d_Y_loss: 0.1484 | g_total_loss: 3.4231
Epoch [ 3260/ 4000] | d_X_loss: 0.1651 | d_Y_loss: 0.1301 | g_total_loss: 4.4806
Epoch [ 3270/ 4000] | d_X_loss: 0.1338 | d_Y_loss: 0.1153 | g_total_loss: 4.5857
Epoch [ 3280/ 4000] | d_X_loss: 0.1198 | d_Y_loss: 0.2741 | g_total_loss: 5.7033
Epoch [ 3290/ 4000] | d_X_loss: 0.1646 | d_Y_loss: 0.1138 | g_total_loss: 4.9019
Epoch [ 3300/ 4000] | d_X_loss: 0.1783 | d_Y_loss: 0.1159 | g_total_loss: 4.5697
Saved samples_cyclegan/sample-003300-X-Y.png
Saved samples_cyclegan/sample-003300-Y-X.png
Epoch [ 3310/ 4000] | d_X_loss: 0.1351 | d_Y_loss: 0.1042 | g_total_loss: 4.0004
Epoch [ 3320/ 4000] | d_X_loss: 0.1388 | d_Y_loss: 0.1409 | g_total_loss: 3.6784
Epoch [ 3330/ 4000] | d_X_loss: 0.2916 | d_Y_loss: 0.1355 | g_total_loss: 5.0286
Epoch [ 3340/ 4000] | d_X_loss: 0.1453 | d_Y_loss: 0.0953 | g_total_loss: 3.9553
Epoch [ 3350/ 4000] | d_X_loss: 0.1948 | d_Y_loss: 0.0886 | g_total_loss: 3.4559
Epoch [ 3360/ 4000] | d_X_loss: 0.0950 | d_Y_loss: 0.1227 | g_total_loss: 4.4487
Epoch [ 3370/ 4000] | d_X_loss: 0.1001 | d_Y_loss: 0.1183 | g_total_loss: 4.4962
Epoch [ 3380/ 4000] | d_X_loss: 0.1401 | d_Y_loss: 0.1332 | g_total_loss: 3.6945
Epoch [ 3390/ 4000] | d_X_loss: 0.1563 | d_Y_loss: 0.0999 | g_total_loss: 4.2952
Epoch [ 3400/ 4000] | d_X_loss: 0.1569 | d_Y_loss: 0.1528 | g_total_loss: 4.5010
Saved samples_cyclegan/sample-003400-X-Y.png
Saved samples_cyclegan/sample-003400-Y-X.png
Epoch [ 3410/ 4000] | d_X_loss: 0.1393 | d_Y_loss: 0.1328 | g_total_loss: 3.6430
Epoch [ 3420/ 4000] | d_X_loss: 0.2032 | d_Y_loss: 0.1012 | g_total_loss: 3.8178
Epoch [ 3430/ 4000] | d_X_loss: 0.2452 | d_Y_loss: 0.1207 | g_total_loss: 3.9782
Epoch [ 3440/ 4000] | d_X_loss: 0.1524 | d_Y_loss: 0.1371 | g_total_loss: 4.6533
Epoch [ 3450/ 4000] | d_X_loss: 0.1837 | d_Y_loss: 0.0820 | g_total_loss: 3.7113
Epoch [ 3460/ 4000] | d_X_loss: 0.1507 | d_Y_loss: 0.1392 | g_total_loss: 3.8481
Epoch [ 3470/ 4000] | d_X_loss: 0.1472 | d_Y_loss: 0.0944 | g_total_loss: 3.7422
Epoch [ 3480/ 4000] | d_X_loss: 0.1026 | d_Y_loss: 0.1668 | g_total_loss: 4.6097
Epoch [ 3490/ 4000] | d_X_loss: 0.1474 | d_Y_loss: 0.1140 | g_total_loss: 4.4020
Epoch [ 3500/ 4000] | d_X_loss: 0.2269 | d_Y_loss: 0.0840 | g_total_loss: 3.5287
Saved samples_cyclegan/sample-003500-X-Y.png
Saved samples_cyclegan/sample-003500-Y-X.png
Epoch [ 3510/ 4000] | d_X_loss: 0.1289 | d_Y_loss: 0.1068 | g_total_loss: 4.3754
Epoch [ 3520/ 4000] | d_X_loss: 0.2573 | d_Y_loss: 0.0829 | g_total_loss: 3.9122
Epoch [ 3530/ 4000] | d_X_loss: 0.1961 | d_Y_loss: 0.0839 | g_total_loss: 4.3736
Epoch [ 3540/ 4000] | d_X_loss: 0.1125 | d_Y_loss: 0.1386 | g_total_loss: 3.9568
Epoch [ 3550/ 4000] | d_X_loss: 0.1357 | d_Y_loss: 0.0808 | g_total_loss: 4.3151
Epoch [ 3560/ 4000] | d_X_loss: 0.1277 | d_Y_loss: 0.0988 | g_total_loss: 4.4753
Epoch [ 3570/ 4000] | d_X_loss: 0.2596 | d_Y_loss: 0.0937 | g_total_loss: 3.5377
Epoch [ 3580/ 4000] | d_X_loss: 0.2191 | d_Y_loss: 0.0863 | g_total_loss: 3.8304
Epoch [ 3590/ 4000] | d_X_loss: 0.1585 | d_Y_loss: 0.0917 | g_total_loss: 4.2170
Epoch [ 3600/ 4000] | d_X_loss: 0.1728 | d_Y_loss: 0.1891 | g_total_loss: 3.3996
Saved samples_cyclegan/sample-003600-X-Y.png
Saved samples_cyclegan/sample-003600-Y-X.png
Epoch [ 3610/ 4000] | d_X_loss: 0.1132 | d_Y_loss: 0.1160 | g_total_loss: 4.2138
Epoch [ 3620/ 4000] | d_X_loss: 0.1529 | d_Y_loss: 0.0983 | g_total_loss: 4.2615
Epoch [ 3630/ 4000] | d_X_loss: 0.1100 | d_Y_loss: 0.0762 | g_total_loss: 5.0378
Epoch [ 3640/ 4000] | d_X_loss: 0.1155 | d_Y_loss: 0.0849 | g_total_loss: 3.9693
Epoch [ 3650/ 4000] | d_X_loss: 0.1100 | d_Y_loss: 0.0999 | g_total_loss: 4.5041
Epoch [ 3660/ 4000] | d_X_loss: 0.8685 | d_Y_loss: 0.2292 | g_total_loss: 7.3380
Epoch [ 3670/ 4000] | d_X_loss: 5.6597 | d_Y_loss: 0.0652 | g_total_loss: 6.6813
Epoch [ 3680/ 4000] | d_X_loss: 0.5272 | d_Y_loss: 0.0855 | g_total_loss: 3.9980
Epoch [ 3690/ 4000] | d_X_loss: 0.4593 | d_Y_loss: 0.1158 | g_total_loss: 3.4508
Epoch [ 3700/ 4000] | d_X_loss: 0.4520 | d_Y_loss: 0.0850 | g_total_loss: 3.8726
Saved samples_cyclegan/sample-003700-X-Y.png
Saved samples_cyclegan/sample-003700-Y-X.png
Epoch [ 3710/ 4000] | d_X_loss: 0.4835 | d_Y_loss: 0.1403 | g_total_loss: 3.0122
Epoch [ 3720/ 4000] | d_X_loss: 0.4813 | d_Y_loss: 0.1356 | g_total_loss: 4.5557
Epoch [ 3730/ 4000] | d_X_loss: 0.4549 | d_Y_loss: 0.0554 | g_total_loss: 3.7894
Epoch [ 3740/ 4000] | d_X_loss: 0.4939 | d_Y_loss: 0.0855 | g_total_loss: 3.7894
Epoch [ 3750/ 4000] | d_X_loss: 0.5257 | d_Y_loss: 0.1092 | g_total_loss: 3.5162
Epoch [ 3760/ 4000] | d_X_loss: 0.4610 | d_Y_loss: 0.1392 | g_total_loss: 3.0089
Epoch [ 3770/ 4000] | d_X_loss: 0.4773 | d_Y_loss: 0.1103 | g_total_loss: 4.4122
Epoch [ 3780/ 4000] | d_X_loss: 0.4823 | d_Y_loss: 0.0650 | g_total_loss: 4.0688
Epoch [ 3790/ 4000] | d_X_loss: 0.4549 | d_Y_loss: 7.5054 | g_total_loss: 7.0633
Epoch [ 3800/ 4000] | d_X_loss: 0.4854 | d_Y_loss: 0.4875 | g_total_loss: 3.5842
Saved samples_cyclegan/sample-003800-X-Y.png
Saved samples_cyclegan/sample-003800-Y-X.png
Epoch [ 3810/ 4000] | d_X_loss: 0.4973 | d_Y_loss: 0.5255 | g_total_loss: 3.0981
Epoch [ 3820/ 4000] | d_X_loss: 0.4389 | d_Y_loss: 0.5273 | g_total_loss: 3.3052
Epoch [ 3830/ 4000] | d_X_loss: 0.4935 | d_Y_loss: 0.5281 | g_total_loss: 3.0967
Epoch [ 3840/ 4000] | d_X_loss: 0.4728 | d_Y_loss: 0.5430 | g_total_loss: 2.8479
Epoch [ 3850/ 4000] | d_X_loss: 0.4454 | d_Y_loss: 0.4561 | g_total_loss: 3.2698
Epoch [ 3860/ 4000] | d_X_loss: 0.4300 | d_Y_loss: 0.5028 | g_total_loss: 2.9159
Epoch [ 3870/ 4000] | d_X_loss: 0.4966 | d_Y_loss: 0.4839 | g_total_loss: 2.5131
Epoch [ 3880/ 4000] | d_X_loss: 0.4554 | d_Y_loss: 0.4816 | g_total_loss: 2.7783
Epoch [ 3890/ 4000] | d_X_loss: 0.4863 | d_Y_loss: 0.5263 | g_total_loss: 3.4355
Epoch [ 3900/ 4000] | d_X_loss: 0.4521 | d_Y_loss: 0.4907 | g_total_loss: 2.5306
Saved samples_cyclegan/sample-003900-X-Y.png
Saved samples_cyclegan/sample-003900-Y-X.png
Epoch [ 3910/ 4000] | d_X_loss: 0.4536 | d_Y_loss: 0.4365 | g_total_loss: 2.8774
Epoch [ 3920/ 4000] | d_X_loss: 0.4681 | d_Y_loss: 0.4440 | g_total_loss: 2.5940
Epoch [ 3930/ 4000] | d_X_loss: 0.4534 | d_Y_loss: 0.4301 | g_total_loss: 2.7251
Epoch [ 3940/ 4000] | d_X_loss: 0.4632 | d_Y_loss: 0.4114 | g_total_loss: 2.6697
Epoch [ 3950/ 4000] | d_X_loss: 0.4345 | d_Y_loss: 0.4898 | g_total_loss: 2.6657
Epoch [ 3960/ 4000] | d_X_loss: 0.4509 | d_Y_loss: 0.5059 | g_total_loss: 2.7177
Epoch [ 3970/ 4000] | d_X_loss: 0.4844 | d_Y_loss: 0.4546 | g_total_loss: 2.5827
Epoch [ 3980/ 4000] | d_X_loss: 0.5180 | d_Y_loss: 0.4715 | g_total_loss: 2.7952
Epoch [ 3990/ 4000] | d_X_loss: 0.4662 | d_Y_loss: 0.4012 | g_total_loss: 3.0120
Epoch [ 4000/ 4000] | d_X_loss: 0.4361 | d_Y_loss: 0.4799 | g_total_loss: 2.6911
Saved samples_cyclegan/sample-004000-X-Y.png
Saved samples_cyclegan/sample-004000-Y-X.png

Tips on Training and Loss Patterns

A lot of experimentation goes into finding the best hyperparameters such that the generators and discriminators don't overpower each other. It's often a good starting point to look at existing papers to find what has worked in previous experiments, I'd recommend this DCGAN paper in addition to the original CycleGAN paper to see what worked for them. Then, you can try your own experiments based off of a good foundation.

Discriminator Losses

When you display the generator and discriminator losses you should see that there is always some discriminator loss; recall that we are trying to design a model that can generate good "fake" images. So, the ideal discriminator will not be able to tell the difference between real and fake images and, as such, will always have some loss. You should also see that $D_X$ and $D_Y$ are roughly at the same loss levels; if they are not, this indicates that your training is favoring one type of discriminator over the and you may need to look at biases in your models or data.

Generator Loss

The generator's loss should start significantly higher than the discriminator losses because it is accounting for the loss of both generators and weighted reconstruction errors. You should see this loss decrease a lot at the start of training because initial, generated images are often far-off from being good fakes. After some time it may level off; this is normal since the generator and discriminator are both improving as they train. If you see that the loss is jumping around a lot, over time, you may want to try decreasing your learning rates or changing your cycle consistency loss to be a little more/less weighted.


In [23]:
fig, ax = plt.subplots(figsize=(12,8))
losses = np.array(losses)
plt.plot(losses.T[0], label='Discriminator, X', alpha=0.5)
plt.plot(losses.T[1], label='Discriminator, Y', alpha=0.5)
plt.plot(losses.T[2], label='Generators', alpha=0.5)
plt.title("Training Losses")
plt.legend()


Out[23]:
<matplotlib.legend.Legend at 0x7fa8a80ff0b8>

Evaluate the Result!

As you trained this model, you may have chosen to sample and save the results of your generated images after a certain number of training iterations. This gives you a way to see whether or not your Generators are creating good fake images. For example, the image below depicts real images in the $Y$ set, and the corresponding generated images during different points in the training process. You can see that the generator starts out creating very noisy, fake images, but begins to converge to better representations as it trains (though, not perfect).

Below, you've been given a helper function for displaying generated samples based on the passed in training iteration.


In [38]:
import matplotlib.image as mpimg

# helper visualization code
def view_samples(iteration, sample_dir='samples_cyclegan'):
    
    # samples are named by iteration
    path_XtoY = os.path.join(sample_dir, 'sample-{:06d}-X-Y.png'.format(iteration))
    path_YtoX = os.path.join(sample_dir, 'sample-{:06d}-Y-X.png'.format(iteration))
    
    # read in those samples
    try: 
        x2y = mpimg.imread(path_XtoY)
        y2x = mpimg.imread(path_YtoX)
    except:
        print('Invalid number of iterations.')
    
    fig, (ax1, ax2) = plt.subplots(figsize=(18,20), nrows=2, ncols=1, sharey=True, sharex=True)
    ax1.imshow(x2y)
    ax1.set_title('X to Y')
    ax2.imshow(y2x)
    ax2.set_title('Y to X')

In [39]:
# view samples at iteration 100
view_samples(100, 'samples_cyclegan')



In [40]:
# view samples at iteration 4000
view_samples(4000, 'samples_cyclegan')



Further Challenges and Directions

  • One shortcoming of this model is that it produces fairly low-resolution images; this is an ongoing area of research; you can read about a higher-resolution formulation that uses a multi-scale generator model, in this paper.
  • Relatedly, we may want to process these as larger (say 256x256) images at first, to take advantage of high-res data.
  • It may help your model to converge faster, if you initialize the weights in your network.
  • This model struggles with matching colors exactly. This is because, if $G_{YtoX}$ and $G_{XtoY}$ may change the tint of an image; the cycle consistency loss may not be affected and can still be small. You could choose to introduce a new, color-based loss term that compares $G_{YtoX}(y)$ and $y$, and $G_{XtoY}(x)$ and $x$, but then this becomes a supervised learning approach.
  • This unsupervised approach also struggles with geometric changes, like changing the apparent size of individual object in an image, so it is best suited for stylistic transformations.
  • For creating different kinds of models or trying out the Pix2Pix Architecture, this Github repository which implements CycleGAN and Pix2Pix in PyTorch is a great resource.

Once you are satified with your model, you are ancouraged to test it on a different dataset to see if it can find different types of mappings!


Different datasets for download

You can download a variety of datasets used in the Pix2Pix and CycleGAN papers, by following instructions in the associated Github repository. You'll just need to make sure that the data directories are named and organized correctly to load in that data.


In [ ]: